68 research outputs found

    Structural analysis and corrosion studies on an ISO 5832-9 biomedical alloy with TiO2 sol–gel layers

    Get PDF
    The aim of this study was to demonstrate the relationship between the structural and corrosion properties of an ISO 5832-9 biomedical alloy modified with titanium dioxide (TiO2) layers. These layers were obtained via the sol–gel method by acid-catalyzed hydrolysis of titanium isopropoxide in isopropanol solution. To obtain TiO2 layers with different structural properties, the coated samples were annealed at temperatures of 200, 300, 400, 450, 500, 600 and 800 C for 2 h. For all the prepared samples, accelerated corrosion measurements were performed in Tyrode’s physiological solution using electrochemical methods. The most important corrosion parameters were determined: corrosion potential, polarization resistance, corrosion rate, breakdown and repassivation potentials. Corrosion damage was analyzed using scanning electron microscopy. Structural analysis was carried out for selected TiO2 coatings annealed at 200, 400, 600 and 800 C. In addition, the morphology, chemical composition, crystallinity, thickness and density of the deposited TiO2 layers were determined using suitable electron and X-ray measurement methods. It was shown that the structure and character of interactions between substrate and deposited TiO2 layers depended on annealing temperature. All the obtained TiO2 coatings exhibit anticorrosion properties, but these properties are related to the crystalline structure and character of substrate–layer interaction. From the point of view of corrosion, the best TiO2 sol–gel coatings for stainless steel intended for biomedical applications seem to be those obtained at 400 C.This study was supported by Grant No. N N507 501339 of the National Science Centre. The authors wish to express their thanks to J. Borowski (MEDGAL, Poland) for the Rex 734 alloy

    Bone Tissue Response to Porous and Functionalized Titanium and Silica Based Coatings

    Get PDF
    Background: Topography and presence of bio-mimetic coatings are known to improve osseointegration. The objective of this study was to evaluate the bone regeneration potential of porous and osteogenic coatings. Methodology: Six-implants [Control (CTR); porous titanium coatings (T1, T2); thickened titanium (Ti) dioxide layer (TiO2); Amorphous Microporous Silica (AMS) and Bio-active Glass (BAG)] were implanted randomly in tibiae of 20-New Zealand white rabbits. The animals were sacrificed after 2 or 4 weeks. The samples were analyzed histologically and histomorphometrically. In the initial bone-free areas (bone regeneration areas (BRAs)), the bone area fraction (BAF) was evaluated in the whole cavity (500 mm, BAF-500), in the implant vicinity (100 mm, BAF-100) and further away (100–500 mm, BAF-400) from the implant. Bone-to-implant contact (BIC-BAA) was measured in the areas where the implants were installed in contact to the host bone (bone adaptation areas (BAAs)) to understand and compare the bone adaptation. Mixed models were used for statistical analysis. Principal Findings: After 2 weeks, the differences in BAF-500 for different surfaces were not significant (p.0.05). After 4 weeks, a higher BAF-500 was observed for BAG than CTR. BAF-100 for AMS was higher than BAG and BAF-400 for BAG was higher than CTR and AMS. For T1 and AMS, the bone regeneration was faster in the 100-mm compared to the 400-mm zone. BIC-BAA for AMS and BAG was lower after 4 than 2 weeks. After 4 weeks, BIC-BAA for BAG was lower than AMS and CTR. Conclusions: BAG is highly osteogenic at a distance from the implant. The porous titanium coatings didn’t stimulate bone regeneration but allowed bone growth into the pores. Although AMS didn’t stimulate higher bone response, it has a potential of faster bone growth in the vicinity compared to further away from the surface. BIC-BAA data were inconclusive to understand the bone adaptation.status: publishe

    The chemical surface evaluation of black and white porous titanium granules and different commercial dental implants with energy-dispersive x-ray spectroscopy analysis

    No full text
    Background The chemical surface structure of the porous titanium grafts has not been found to study in the literature on the similarity of chemical surfaces of different commercial dental implants. Purpose The purpose of this study is to investigate the chemical composition and surface energies of white (WPTG) and black porous titanium granules (PTG) by energy dispersive x-ray spectrometry (EDX) analysis to compare with different commercial dental implant surface. Materials and Methods The surface chemical compositions of six commercially available dental implants with different surface structures, PTG and WPTG were examined by EDX analysis. Surface analyzes were performed on the apical, middle, and coronal parts of each implant and on the top, flank, and valley regions on each side. Surface analyzes of dental implants were evaluated at x200 and x2000 magnifications. The EDX evaluation of PTG grafts were evaluated at x250, x2000, x5000, and x50 000 magnifications. Results PTG grafts showed elements of Na (8.88 +/- 9.98%), Cl (2.44 +/- 1.96%), and Al (0.99 +/- 0.37%) as well as Ti (90.06 +/- 11.34%) molecule at x5000 magnification. In WPTG, Ti (%34.55 +/- 6.41%) and O (%65.44 +/- 6.42%) molecules were detected. Conclusions It has been found that PTG surface was not made of pure titanium, it has different chemical molecules at larger magnifications. Cell culture and experimental studies are needed to establish a relationship between the different commercial implants and the surface structure of the titanium granules
    • 

    corecore